INTERVAL ARTIFICIAL NEURAL NETWORK BASED RESPONSE OF UNCERTAIN SYSTEM SUBJECT TO EARTHQUAKE MOTIONS
نویسندگان
چکیده مقاله:
Earthquakes are one of the most destructive natural phenomena which consist of rapid vibrations of rock near the earth’s surface. Because of their unpredictable occurrence and enormous capacity of destruction, they have brought fear to mankind since ancient times. Usually the earthquake acceleration is noted from the equipment in crisp or exact form. But in actual practice those data may not be obtained exactly at each time step, rather those may be with error. So those records at each time step are assumed here as intervals. Then using those interval acceleration data, the structural responses are found. The primary background for the present study is to model Interval Artificial Neural Network (IANN) and to compute structural response of a structural system by training the model for Indian earthquakes at Chamoli and Uttarkashi using interval ground motion data. The neural network is first trained here for real interval earthquake data. The trained IANN architecture is then used to simulate earthquakes by feeding various intensities and it is found that the predicted responses given by IANN model are good for practical purposes. The above may give an idea about the safety of the structural system in case of future earthquakes. Present paper demonstrates the procedure for simple case of a simple shear structure but the procedure may easily be generalized for higher storey structures as well.
منابع مشابه
Response Prediction of Structural System Subject to Earthquake Motions using Artificial Neural Network
This paper uses Artificial Neural Network (ANN) models to compute structural response of a structural system by training the model for a particular earthquake. Here, the earthquakes in India viz. at Chamoli and Uttarkashi ground motion data have been considered for the analysis. The neural network is first trained here for a single real earthquake data on a single degree of freedom structural s...
متن کاملSTRUCTURAL RESPONSE OBSERVER BASED ON ARTIFICIAL NEURAL NETWORK
Structural vibration control is one of the most important features in structural engineering. Real-time information about seismic resultant forces is required for deciding module of intelligent control systems. Evaluation of lateral forces during an earthquake is a complicated problem considering uncertainties of gravity loads amount and distribution and earthquake characteristics. An artificia...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Prediction of Patient’s Response to Cognitive-Behavior Therapy by Artificial Neural Network
Objective: Social anxiety disorder (SAD) is defined as a constant fear of being embarrassed or negatively evaluated in social situations or while doing activities in the presence of others. Several studies have examined the role of certain variables that might predict response to treatment and may affect treatment outcome. The purpose of this study was to identify predictive variables of change...
متن کاملGlobal irradiation interval forecasts based on artificial neural network
Solar radiation is one of the principal energy sources for physical, biological and chemical processes, occupying the most important role in many engineering applications. The process of converting sunlight to electricity without combustion allows to create power without pollution. The major problem of such energy source is its intermittence and its stochastic character which make difficult the...
متن کاملAn application of artificial neural network to maintenance management
This study shows the usefulness of Artificial Neural Network (ANN) in maintenance planning and man-agement. An ANN model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. The model achieved an accuracy of over 70% in predicting the expected downtime.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 3
صفحات 365- 384
تاریخ انتشار 2016-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023